119 research outputs found

    Bit rates in audio source coding

    Get PDF
    The goal is to introduce and solve the audio coding optimization problem. Psychoacoustic results such as masking and excitation pattern models are combined with results from rate distortion theory to formulate the audio coding optimization problem. The solution of the audio optimization problem is a masked error spectrum, prescribing how quantization noise must be distributed over the audio spectrum to obtain a minimal bit rate and an inaudible coding errors. This result cannot only be used to estimate performance bounds, but can also be directly applied in audio coding systems. Subband coding applications to magnetic recording and transmission are discussed in some detail. Performance bounds for this type of subband coding system are derived

    Extraction of vocal-tract system characteristics from speechsignals

    Get PDF
    We propose methods to track natural variations in the characteristics of the vocal-tract system from speech signals. We are especially interested in the cases where these characteristics vary over time, as happens in dynamic sounds such as consonant-vowel transitions. We show that the selection of appropriate analysis segments is crucial in these methods, and we propose a selection based on estimated instants of significant excitation. These instants are obtained by a method based on the average group-delay property of minimum-phase signals. In voiced speech, they correspond to the instants of glottal closure. The vocal-tract system is characterized by its formant parameters, which are extracted from the analysis segments. Because the segments are always at the same relative position in each pitch period, in voiced speech the extracted formants are consistent across successive pitch periods. We demonstrate the results of the analysis for several difficult cases of speech signals

    Likelihood-Ratio-Based Biometric Verification

    Get PDF
    The paper presents results on optimal similarity measures for biometric verification based on fixed-length feature vectors. First, we show that the verification of a single user is equivalent to the detection problem, which implies that, for single-user verification, the likelihood ratio is optimal. Second, we show that, under some general conditions, decisions based on posterior probabilities and likelihood ratios are equivalent and result in the same receiver operating curve. However, in a multi-user situation, these two methods lead to different average error rates. As a third result, we prove theoretically that, for multi-user verification, the use of the likelihood ratio is optimal in terms of average error rates. The superiority of this method is illustrated by experiments in fingerprint verification. It is shown that error rates below 10/sup -3/ can be achieved when using multiple fingerprints for template construction

    Spectral estimation and significance of glottal-pulse parameters

    Get PDF

    Adaptive interpolation of discrete-time signals that can be modeled as autoregressive processes

    Get PDF
    This paper presents an adaptive algorithm for the restoration of lost sample values in discrete-time signals that can locally be described by means of autoregressive processes. The only restrictions are that the positions of the unknown samples should be known and that they should be embedded in a sufficiently large neighborhood of known samples. The estimates of the unknown samples are obtained by minimizing the sum of squares of the residual errors that involve estimates of the autoregressive parameters. A statistical analysis shows that, for a burst of lost samples, the expected quadratic interpolation error per sample converges to the signal variance when the burst length tends to infinity. The method is in fact the first step of an iterative algorithm, in which in each iteration step the current estimates of the missing samples are used to compute the new estimates. Furthermore, the feasibility of implementation in hardware for real-time use is established. The method has been tested on artificially generated auto-regressive processes as well as on digitized music and speech signals

    Side-View Face Recognition

    Get PDF
    Side-view face recognition is a challenging problem with many applications. Especially in real-life scenarios where the environment is uncontrolled, coping with pose variations up to side-view positions is an important task for face recognition. In this paper we discuss the use of side view face recognition techniques to be used in house safety applications. Our aim is to recognize people as they pass through a door, and estimate their location in the house. Here, we compare available databases appropriate for this task, and review current methods for profile face recognition

    Threshold-optimized decision-level fusion and its application to biometrics

    Get PDF
    Fusion is a popular practice to increase the reliability of biometric verification. In this paper, we propose an optimal fusion scheme at decision level by the AND or OR rule, based on optimizing matching score thresholds. The proposed fusion scheme will always give an improvement in the Neyman–Pearson sense over the component classifiers that are fused. The theory of the threshold-optimized decision-level fusion is presented, and the applications are discussed. Fusion experiments are done on the FRGC database which contains 2D texture data and 3D shape data. The proposed decision fusion improves the system performance, in a way comparable to or better than the conventional score-level fusion. It is noteworthy that in practice, the threshold-optimized decision-level fusion by the OR rule is especially useful in presence of outliers

    Likelihood Ratio-Based Detection of Facial Features

    Get PDF
    One of the first steps in face recognition, after image acquisition, is registration. A simple but effective technique of registration is to align facial features, such as eyes, nose and mouth, as well as possible to a standard face. This requires an accurate automatic estimate of the locations of those features. This contribution proposes a method for estimating the locations of facial features based on likelihood ratio-based detection. A post-processing step that evaluates the topology of the facial features is added to reduce the number of false detections. Although the individual detectors only have a reasonable performance (equal error rates range from 3.3% for the eyes to 1.0% for the nose), the positions of the facial features are estimated correctly in 95% of the face images

    Biometrics — Developments and Potential

    Get PDF
    This article describes the use of biometric technology in forensic science, for the development of new methods and tools, improving the current forensic biometric applications, and allowing for the creation of new ones. The article begins with a definition and a summary of the development of this field. It then describes the data and automated biometric modalities of interest in forensic science and the forensic applications embedding biometric technology. On this basis, it describes the solutions and limitations of the current practice regarding the data, the technology, and the inference models. Finally, it proposes research orientations for the improvement of the current forensic biometric applications and suggests some ideas for the development of some new forensic biometric applications
    corecore